Existing Fuel Performance Models

LWR Fuel Behavior Modeling – U.S. State of the Art

- Code development efforts have been limited since the early 80's
- FRAPCON (non-proprietary)
 - 1.5 D finite difference
 - steady operation (separate code for transients)
 - highly empirical
 - highly simplified fuel mechanics
- FALCON (proprietary EPRI owned; developed by ANATECH)
 - 1.5 or 2D (R-Z or R-q) FEM with coupled thermomechanics
 - steady and transient operations
 - contact with friction and sliding
 - smeared-crack constitutive behavior Fuel pellet

FALCON model to investigate clad failure due to defect

Fuel Performance Models

- Coupled thermomechanics model describes fuel rod behavior Heat Conduction: $\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + E_f \dot{F}$ Mechanics: $\nabla \cdot \mathbf{T} + \rho \mathbf{f} = 0$
- Microstructure evolution is described by materials models

Fuel Behavior

- · Volumetric heat generation (fission)
- · Thermal conductivity is a function of:
 - Temperature
 - · fission products
 - · Off-stoichiometry
 - Porosity
 - Radiation damage
- · Volumetric strain:
 - Densification
 - Solid and gaseous fission products
- Pressure increase due to fission gas release

Gap/Plenum Behavior

- Gap heat transfer with $k_a = f(T, n)$
- Mechanical contact
- Plenum pressure as a function of:
 - evolving gas volume (from mechanics)
 - > gas mixture (from FGR model)
 - > gas temperature approximation

Cladding Behavior

- · Thermal and irradiation creep
- Thermal expansion
- Plasticity

Unirradiated Thermoconductivity

- Changes with temperature
- Fink model accurate description of how k_0 changes with temperature

Fig. 9. Comparison of the recommended equation for the thermal conductivity of 95% dense UO_2 , Eq. (19) with the data fit and the equations of Ronchi et al. [5] (physically based Eq. (16) and polynomial fit to their measurements).

Effect of Radiation on Thermoconductivity

- Microstructural changes that take place within the fuel during its lifetime in a reactor degrades the thermoconductivity, including
 - Solid fission products, dissolved and precipitated
 - Pores and fission gas bubbles
 - Oxygen off-stoichiometry
 - Radiation damage

Fig.11. Ceramographs at $r/r_0 = 0.74$ on as-etched surface of fuels irradiated to 86 GWd/t in IFA566 rig: (a) standard fuel, (b) Al–Si–O doped large-grained fuel.

• Lucuta et al. proposed a multiplicative decomposition of the various effects $k=\kappa_{fp}\,\kappa_p\,\kappa_{O/M}\,\kappa_{rd}\,\kappa_{cr}\,k_0$

Lucuta Model

Using SIMFUEL (simulated high-burnup fuel), the effects of fission products and off-stoichiometry were determined using empirical fits

$$\kappa_{1p} = 1 + \frac{0.019\beta}{(3 - 0.019\beta)} \frac{1}{1 + \exp(-(T - 1200)/100)}$$

$$\kappa_{1d}(\beta) = \left(\frac{1.09}{\beta^{3.265}} + \frac{0.0643}{\sqrt{\beta}}\sqrt{T}\right)$$

$$\arctan\left(\frac{1}{1.09/\beta^{3.265} + (0.0643/\sqrt{\beta})\sqrt{T}}\right)$$

Fig. 2. Thermal conductivity of fully dense UO_2 and SIMFUEL with an equivalent burnup of 1.5, 3, 6 and 8 at.% as a function of temperature [16-19].

Lucuta, J Nuc Mat, 232 (1996) 166

Fig. 1. SEM image of a polished and etched surface of 6 at% burnup SIMFUEL showing equiaxed matrix grains and precipitates.

$$\frac{1}{k_{2+x}} = \frac{1}{k_0} + \frac{1}{k_x} = (a_0 + a_1 x) + (b_0 - b_1 x)T$$

Fig. 5. The effect of deviation from stoichiometry in UO_{2+x} and SIMFUEL for the thermal resistivity plotted as a function of the temperature [21].

Lucuta Model (cont)

- Effects of porosity and radiation damage on thermal conductivity were taken from the literature
 - Porosity effect taken from Maxwell-Eucken formula $\kappa_{2p} = \frac{1-p}{1+(\sigma-1)p}$
 - Analytical formula
 - Assumes uniform porosity distribution
 - Pore shape accounted for with shape factor, σ
 - Experimental data showing the effect of porosity for high porosities is not available
 - Radiation damage
 - From an empirical study
 - Considers point defect effect

$$\kappa_{4r} = 1 - \frac{0.2}{1 + \exp((T - 900)/80)}$$

Fig. 8. Estimated effect of radiation damage on fuel thermal conductivity and the overlapped effect as a function of the temperature.

Unirradiated Thermal Expansion

- Significant thermal expansion occurs within the fuel due to the high temperatures
- Data is summarized and best fit model is presented in Fink (2000)

Fig. 5. Measurements of the linear expansion,
$$\Delta L/L$$
, of solid UO₂ compared with the recommended equation of Martin [40] and its recommended uncertainties.

$$\alpha_{\mathbf{P}}(l) = \frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_{\mathbf{P}}.$$
 (9)

For 273 K $\leq T \leq 923$ K,

$$\alpha_{\rm P}(l) = 9.828 \times 10^{-6} - 6.930 \times 10^{-10} T
+ 1.330 \times 10^{-12} T^2 - 1.757 \times 10^{-17} T^3;$$
(10)

for 923 K $\leq T \leq$ 3120 K

$$\alpha_{\rm P}(l) = 1.1833 \times 10^{-5} - 5.013 \times 10^{-9} T
+ 3.756 \times 10^{-12} T^2 - 6.125 \times 10^{-17} T^3,$$
(11)

Other Volumetric Strains

- Additional volumetric strains occur in reactor:
 - Densification early in the fuel life
 - Solid and gaseous fission product swelling
- Densification (MATPRO empirical correlation)

IRRADIATED

 $\varepsilon_D = \Delta \rho_0 \, e^{\frac{Bu \ln(0.01)}{C_D Bu_D} - 1}$

Solid and gaseous fission product swelling (MATPRO empirical correlations)

$$\Delta \varepsilon_{sw-s} = 6.407 \times 10^{-5} \rho \Delta Bu$$

$$\Delta \varepsilon_{sw-g} = 2.25x10^{-31} \Delta Bu \ \rho \ (2800 - T)^{11.73} *$$

$$e^{-0.0162 \ (2800 - T)} \ e^{-0.021 \rho \ Bu}$$

AS FABRICATED

Fission Gas Release

- Fission gas is released into the gap and plenum after three steps
 - 1. Diffusion of gas from grain interior to grain boundaries
 - 2. Coalescence of bubbles to triple junctions
 - 3. Percolation of bubbles over various grains until they reach a free surface

 Only considers diffusion of gas to grain boundaries (step 1)

 Diffusion controlled model; any gas atom on a grain boundary is assumed to instantly be released

 $f_{\rm c} = 4\left(\frac{\omega}{\pi}\right)^{1/2} - \frac{3}{2}\omega$

Fission Gas Release (cont)

Two stage Forsberg-Massih mechanistic model

 Considers intragranular diffusion diffusion to grain boundaries (step 1)

 Also, grain boundary gas accumulation, resolution back into grain, saturation (step 2)

Assumes that once the porosity on a bubble is

interconnected, it is released

Fig. 1. Fraction of gas atoms on grain boundary, G_i/G_B , as a function of exposure for downward fuel cascading temperature history. γ is the bubble surface tension, 2θ is the angle where two free surfaces meet at a grain boundary, r is average bubble radius, V_c is the fractional coverage of the grain boundaries at saturation and the grain radius is taken to be $5 \mu m$.

Issues with Traditional Models

- Empirical or semi-empirical models cannot accurately be extrapolated to new conditions or materials
- Some simplifying assumptions are incorrect
- Coupled behaviors are treated as uncoupled
 - e.g. Fission gas effect on thermal conductivity is treated separately from the fission gas effect on swelling and both are separate from the fission gas release model.
- Hard to measure behaviors are treated with simple analytical models that have not been verified

Idaho National Laboratory

Multiscale Fuel Performance Model Approach

Simulations at various scales are used to improve and replace traditional materials models

New Multiscale Modeling Approach

- Empirical models can accurately interpolate between data but cannot extrapolate outside of test bounds
- Research goal: To develop improved, science-based materials models for fuel performance using hierarchical multiscale modeling

Atomistic simulation

Atomisticallyinformed parameters

Mesoscale models

Fuel performance models

- Atomic scale resolution of material behavior
- Extremely limited on length
 and time scales
- Describes microstructure evolution
 - Limited to micron length scales

 Models fuel rods/ fuel assemblies

Simulation results will be validated with experiments

ldaho National Laboratory

Scale-Bridging to Macroscale

MBM: Multiscale Fuel Performance Code

MBM Summary

- MBM (MOOSE-BISON-MARMOT) is a NEAMS-funded fuel performance code
- Objective: To deliver a science-based (truly predictive) computational tool for nuclear fuel pin analysis and design

Multiscale Object Oriented Simulation Environment (MOOSE)

- Finite element-based partial differential equation solver in 1-, 2- and 3-D
- User only required to create objects to define the physics
- Parallel framework provides core set of common services
 - libMesh: http://libmesh.sf.net
- Fully-coupled multiphysics using Jacobian-Free Newton Krylov
- Utilizes state-of-the-art linear and nonlinear solvers
 - Robust solvers are key for "ease of use"

MARMOT

 Determine microstructure evolution due to applied load, temperature gradients and radiation damage.

Void Pinning in a Compressed Bicrystal Area of left grain vs. time Area of left grain vs. time MOOSE

თ₁₁ ე.00

-100.00

-475.00

-850.00

-1225.00

-1600.00

BISON

• Solves the fully-coupled thermomechanics and species diffusion

equations in 1D-3D

Includes multiphysics constitutive behavior

Applicable to both steady and transient operation

Massively parallel computers

Applicable to LWR, TRISO, and TRU fuel

Time = 3.5731e+07

Temperature

1.202e+03 1.034e+03 8.658e+02 6.979e+02 5.300e+02

Full Fuel Pin Simulation

- First 3-D full fuel pellet simulation
- 320 pellets with 234M degrees of freedom
- Massively parallel (tested using up to 11,820 cores)
- Good weak and strong scaling over 10K cores using fully implicit time integration and fully-coupled multiphysics

3-D Simulation of Missing Pellet Surface

- PCI limits reactor performance associated with power uprates, higher burnup and manufacturing quality assurance around missing pellet surface (MPS) chips and operating flexibility during power changes
- 3-D fuel performance model is critical to assess complex, coupled physics and irregular geometries responsible for PCI fuel failures and poor reactor performance

Missing Pellet Surface

TRISO Fuel Particle Model

ОРуС

- Gen IV helium-cooled thermal reactor
- Fission product release is a concern

Flaws in the SiC layer have a large effect on fission gas release

Multiscale Coupling Methods

Physics-based materials model are developed from the mesoscale

simulation results

Concurrent Coupling Demonstration

- BISON fuel rodlet simulation is coupled to four mesoscale simulations
 - Mesoscale simulation models the effect of voids on thermal conductivity
- Both length scales operate at the same times throughout the simulation

- Temperature and fission rate are passed to mesoscale at four locations.
- Mesoscale thermal conductivity is interpolated throughout the stack
- Bottom values are reflected to the top of the stack for the interpolation

Material Model Example

 Typical models of the effect of porosity on thermal conductivity assume a random bubble distribution, however, bubbles often form on grain boundaries

Atomistic

 The UO₂ grain boundary thermal resistance is calculated using MD simulation for three GB types

Boundary Type	Grain size (nm)	k (W/mK)	R _k (m²K/W)
Symmetry Σ5 tilt	21.6	7.62	56
Translated Σ5 twist	21.6	14.22	20.13
Translated Σ5 tilt	20.24	9.38	39

Mesoscale

- Mesoscale heat conduction simulations are used to determine the effect of GB porosity on thermal conductivity
- An expression of the k
 multiplier with intergranular
 porosity as a function of
 grain size d and grain
 boundary coverage using
 the GB thermal resistance
 from atomistic

$$R'_{k} = A + (R_{k}^{0} - A)(1 - X_{GB}^{C})$$
$$f_{GB} = \frac{\kappa_{0}}{1 + \kappa_{0} R'_{k}/d}$$

Effect of GB Porosity on Fuel Performance

Time = 1740.0 days

Deformation exaggerated by a factor of 2

Time (s)

Conclusions

- Radiation-induced microstructure evolution has a large effect on fuel performance
- Multiscale modeling in conjunction with separate effects and integrated testing provide a means of developing more predictive fuel performance models

